Formation of H₂

John H. Black

Workshop on Benchmarking PDR Models Lorentz Center, Leiden, 2004 April 7

KEY ISSUES

- What is the H₂ formation efficiency at high dust temperatures?
- What is the rate of formation?

Predictions of models

Can it be determined from observations of PDRs?

• Excitation of newly formed molecules

distribution over vibration-rotation states (v,J)

line broadening of kinetically hot molecules?

do these effects leave observable signatures?

BENCHMARKING RATE

Expressed as a binary rate coefficient:

$$R = 3 \times 10^{-18} T_{\rm gas}^{1/2} n({\rm H}) n_{\rm H} \ {\rm cm}^{-3} {\rm s}^{-1}$$

thus, for example, $R = 2.121 \times 10^{-17} n(\mathrm{H}) n_{\mathrm{H}} \mathrm{cm}^{-3} \mathrm{s}^{-1}$ at $T_{\mathrm{gas}} = 50 \mathrm{K}$. This form of the rate follows from Hollenbach, Werner, and Salpeter (1971).

EXPERIMENTS

Pirronello and collaborators have measured association of HD and H_2 on silicate (olivine) and amorphous carbon surfaces, which were designed to be good experimental analogues of interstellar dust surfaces. Because several processes are occurring in the tranformation of H into H_2 on a surface

- H atoms collide with a surface
- H atoms bind to the surface and migrate around on it
- H atoms meet on the surface and associate to form H₂
- H-atom desorption may occur before association
- H₂ desorption releases the new molecule into the gas phase

it is necessary to construct a numerical model of the experiments. This consists mainly in a pair of coupled differential rate equations. Katz et al. (1999) presented such a model of the experiments and Biham et al. (1998) discussed the behavior of two limiting cases in the astrophysical context.

Cazaux & Tielens (2004) offered an alternative model that incorporates chemisorption and tunneling as well as the processes considered by Katz et al. Cazaux & Tielens conclude that the association efficiency can remain high even for warm surfaces ($T_{\text{surface}} \geq 100$ K). Cazaux & Tielens (2002) had previously applied their model to the computation of association efficiencies that can be included in the astrophysical rate.

I have taken the model of Katz et al. and integrated the formation efficiency over the standard particle-size distribution of Mathis, Rumpl, and Nordsieck in order to express the experimentally determined rate in terms of a binary rate coefficient; i.e., a form that can be compared directly with the benchmarking rate (above). Examples are shown in the following tables. Details are explained in accompanying notes.

Effective binary rate coefficients $R_{\rm eff}$ [cm³ s⁻¹] Conditions of model F1: $T_{\rm gas}=50$ K, $T_{\rm surface}=20$ K, $n_{\rm H}=10^3$ cm⁻³

n(H)	$R_{ m eff} \ m silicate$	$R_{ m eff} \ { m carbon}$
10^{3}	$1.5\mathrm{E}{-20}$	$7.4 \mathrm{E}{-17}$
10^{2}	$1.5\mathrm{E}{-21}$	$6.6E{-}17$
10	$1.5\mathrm{E}{-22}$	$4.9\mathrm{E}{-17}$
1	$1.5\mathrm{E}{-23}$	$2.6\mathrm{E}{-17}$

Dependence of rate on T_{surface} at $T_{\text{gas}} = 300 \text{ K}$, $n(\text{H}) = 10^3$

$T_{ m surface}$	$R_{ m eff}$	$R_{ m eff}$
	silicate	carbon
12	$1.7E{-}16$	2.1E-20*
15	$3.1\mathrm{E}{-17}$	5.6E-17*
20	$8.7\mathrm{E}{-20}$	1.8E-16
25	$9.0\mathrm{E}{-22}$	$5.9\mathrm{E}{-17}$
30	$4.2\mathrm{E}{-23}$	$3.4 \mathrm{E}{-18}$
35	$4.8E{-}24$	$9.5\mathrm{E}{-20}$

^{*}Note: for these conditions, H_2 formation on the surface achieves the steady-state limit only after times of the order of 10^5 s or longer.