PDR-Model Comparison

Lorentz Center Leiden

Benchmark Problem Results Version 3 - End of 2. Iteration

M.Röllig

Participating Models

Model Name	Authors					
Aikawa	HH. Lee, E. Herbst, G. Pineau des Forets, J. Le Bourlot, Y. Aikawa, N. Kuboi					
Bensch	H. Störzer, B. Köster, M. Zilinsky, U. Leuenhagen, S.Jeyakumar, F. Bensch					
CLOUDY	Gary J. Ferland, Peter van Hoof, Nick P. Abel, Gargi Shaw					
COSTAR	I. Kamp, F. Bertoldi, GJ. van Zadelhoff					
HTBKW	D. Hollenbach, A.G.G.M. Tielens, M.G. Burton, M.J. Kaufman, M.G. Wolfire					
KOSMA	H. Störzer, B. Köster, M. Zilinsky, U. Leuenhagen, S.Jeyakumar, M.Röllig					
Lee96mod	HH. Lee, E. Herbst, G. Pineau des Forets, E. Roueff, J. Le Bourlot					
Leiden	J. Black, E. van Dishoeck, D. Jansen and B. Jonkheid					
Meijerink	R.Meijerink, M.Spaans					
Meudon	J. Le Bourlot, E. Roueff, F. Le Petit					
Sternberg	A.Sternberg, A.Dalgarno					
UCL_PDR	S. Viti, Wing-Fai Thi, Tom Bell					

Changes in Version 3

- New results plotted for:
 - Bensch
 - CLOUDY
 - HTBKW
 - KOSMA-tau
 - Meijerink
 - Meudon
 - UCL_PDR
- KOSMA changed name to KOSMA-tau (tau: Tel Aviv University)
- New plots have white background, former plots have colored background

- standard chemistry:
 - 31 species

H, H⁺, H₂, H₂⁺, H₃⁺, O, O⁺, OH⁺, OH, O₂, O₂⁺, H₂O, H₂O⁺, H₃O⁺, C, C⁺, CH, CH⁺, CH₂, CH₂⁺, CH₃, CH₃⁺, CH₄, CH₄⁺, CH₅⁺, CO, CO⁺, HCO⁺, He, He⁺, e⁻

elemental abundances

He=0.1, C=1.0x10⁻⁴, O=3.0x10⁻⁴

standardized chemical network

PAH's switched off

Influence of one single CRP rate

PDR Model Comparison

standard radiation field

normalized to Draine field(1978) cosmic-ray ionization: $\zeta = 5 \times 10^{-17} \text{ s}^{-1}$ visual extinction: $A_V = 6.289 \times 10^{-22} \times N_{\text{Htotal}}$ dust attenuation: $\tau_{UV} = 3.02 \times A_V$

Requested Quantities

For the species: H, H_2 , C⁺, C, CO, O, O₂, CH, OH, e⁻

- 1. local absolute volume densities (cm⁻³) vs. depth
- 2. column densities (cm⁻²) vs. depth
- 3. dissociation/ionization rates (s⁻¹) vs. depth for H_2 , C, CO
- Iocal cooling/heating rates (erg s⁻¹ cm⁻³) fine structure lines of CII(158m), OI(63μ,146μ), and CI(610μ,370μ), and photoelectric grain heating
- 5. gas and dust temperature for models F5-F8

F1 completed by all 12 groupsF2-F4 complete by 10 groupsF5-F8 completed by 8 groups (some with numerical 'noise')

CLOUDY uses different chemical network

KOSMA/Bensch use spherical geometry

results for Lee96mod are for t=10⁸ yrs

F1	F2
T=const	T=const
n=10 ³ cm ⁻³ , χ=10	n=10 ³ cm ⁻³ , χ=10 ⁵
F3	F4
T=const	T=const
n=10 ^{5.5} cm ⁻³ ,χ=10	n=10 ^{5.5} cm ⁻³ , χ=10 ⁵
F5	F6
T=variable	T=variable
n=10 ³ cm ⁻³ ,χ=10	n=10 ³ cm ⁻³ , χ=10 ⁵
F7	F 8
T=variable	T=variable
n=10 ^{5.5} cm ⁻³ , χ=10	n=10 ^{5.5} cm ⁻³ , χ=10 ⁵

Preliminary Results

overview plots of the benchmark runs will be available online as PDF files:

http://www.ph1.uni-koeln.de/~roellig/

Model Results F1-F8

- photoreaction rates
- densities
- heating/cooling rates
- surface brightnesses

Model Results F1-F8

- photoreaction rates
- densities
- heating/cooling rates
- surface brightnesses

Modell	z	AV	H2	СО	CI	H2/Sternb	CO/Sternb	CI/Sternb
Aikawa	0,00E+00	0	2,59E-10	1,00E-09	3,00E-10	1,01E+00	1,00E+00	2,00E-01
Bensch	0,00E+00	0	2,47E-10	1,00E-09	1,50E-09	9,63E-01	1,00E+00	1,00E+00
CLOUDY	1,08E+12	6,82E-07	2,32E-10	1,01E-09	1,70E-09	9,02E-01	1,01E+00	1,13E+00
COSTAR	0,00E+00	0	2,59E-10	3,00E-10	1,50E-09	1,01E+00	3,00E-01	1,00E+00
HTBKW	4,77E+10	3,00E-08	2,60E-10	1,00E-09	1,50E-09	1,01E+00	1,00E+00	1,00E+00
KOSMA	0,00E+00	0,00E+00	2,48E-10	9,19E-10	1,50E-09	9,63E-01	9,19E-01	1,00E+00
Lee96mod	5,00E+14	3,15E-04	2,48E-10	9,98E-10	3,00E-10	9,67E-01	9,98E-01	2,00E-01
Leiden	9,21E+13	8,24E-05	2,51E-10	8,85E-10	1,66E-09	9,77E-01	8,85E-01	1,11E+00
Meijerink	0,00E+00	0,00E+00	2,59E-10	1,00E-09	1,50E-09	1,01E+00	1,00E+00	1,00E+00
Meudon	7,95E+10	5,00E-08	3,08E-10	1,01E-09	1,72E-09	1,20E+00	1,01E+00	1,14E+00
Sternberg	0,00E+00	0,00E+00	2,57E-10	1,00E-09	1,50E-09	1,00E+00	1,00E+00	1,00E+00
UCL_PDR	1,70E+12	1,07E-06	2,59E-10	1,00E-09	1,50E-09	1,01E+00	1,00E+00	1,00E+00

Modell	z	AV	H2	со	СІ	H2/Sternb	CO/Sternb	CI/Sternb
Aikawa	5,00E+16	3,20E-02	1,33E-13	6,80E-10	2,74E-10	1,89E+00	7,49E-01	2,04E-01
Bensch	5,86E+16	1,17E-01	1,47E-14	6,73E-10	1,07E-09	2,09E-01	7,41E-01	7,96E-01
CLOUDY	4,83E+16	3,04E-02	8,57E-14	9,38E-10	1,55E-09	1,22E+00	1,03E+00	1,16E+00
COSTAR	5,08E+16	3,19E-02	8,52E-14	2,35E-10	1,36E-09	1,21E+00	2,59E-01	1,02E+00
НТВКЖ	4,69E+16	2,95E-02	1,81E-13	7,55E-10	1,37E-09	2,57E+00	8,31E-01	1,02E+00
KOSMA	5,06E+16	1,05E-01	1,65E-14	7,04E-10	1,10E-09	2,34E-01	7,75E-01	8,23E-01
Lee96mod	5,00E+16	3,14E-02	2,20E-13	7,10E-10	2,74E-10	3,12E+00	7,82E-01	2,05E-01
Leiden	5,53E+16	2,81E-02	1,20E-13	7,35E-10	1,41E-09	1,71E+00	8,09E-01	1,05E+00
Meijerink	4,98E+16	3,13E-02	1,12E-13	7,42E-10	1,37E-09	1,59E+00	8,17E-01	1,02E+00
Meudon	4,51E+16	2,83E-02	6,68E-14	7,98E-10	1,38E-09	9,47E-01	8,79E-01	1,03E+00
Sternberg	5,00E+16	3,20E-02	7,05E-14	9,08E-10	1,34E-09	1,00E+00	1,00E+00	1,00E+00

Transformation A_V-A_{V,eff}

PDR Model Comparison

photo rates - n=10³ cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

photo rates - $n=10^{3}$ cm⁻³, $\chi=10$

PDR Model Comparison

photo rates - $n=10^3$ cm⁻³, $\chi=10$, variable T

5.-8. April, 2004

PDR Model Comparison

photo rates - n=10³ cm⁻³, χ =10, variable T

PDR Model Comparison

photo rates - n=10³ cm⁻³, χ =10⁵

PDR Model Comparison

photo rates - n=10³ cm⁻³, χ =10⁵

PDR Model Comparison

photo rates - n=10³ cm⁻³, χ =10⁵, variable T

PDR Model Comparison

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10¹, variable T

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10¹, variable T

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10⁵

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10⁵, variable T

PDR Model Comparison

photo rates - n=10^{5.5} cm⁻³, χ =10⁵, variable T

PDR Model Comparison

Model Results F1-F4

- photoreaction rates
- densities
- heating/cooling rates
- surface brightnesses

C⁺, C, and CO density

C⁺, C, CO density - n=10³ cm⁻³, χ =10

C⁺, C, CO density - n=10³ cm⁻³, χ =10

C⁺, C, CO density - n=10³ cm⁻³, χ =10, variable T

C^+ , C, CO density - n=10³ cm⁻³, χ =10, variable T

C⁺, C, CO density - n=10³ cm⁻³, χ = 10⁵

C⁺, C, CO density - n=10³ cm⁻³, χ = 10⁵

C⁺, C, CO density - n=10³ cm⁻³, χ =10⁵, variable T

C⁺, C, CO density - n=10³ cm⁻³, χ =10⁵, variable T

C⁺, C, CO density - n=10^{5.5} cm⁻³, χ =10

 C^{+} , C, CO density - n=10^{5.5} cm⁻³, χ =10

C⁺, C, CO density - n=10^{5.5} cm⁻³, χ =10¹, variable T

C⁺, C, CO density - n=10^{5.5} cm⁻³, χ =10¹, variable T

C⁺,C, CO density - n=10^{5.5} cm⁻³, χ =10⁵

C^{+} , C, CO density - n=10^{5.5} cm⁻³, χ =10⁵, variable T

C⁺, C, CO density - n=10^{5.5} cm⁻³, χ =10⁵, variable T

H and H₂ density

H density - n=10³ cm⁻³, χ =10

5.-8. April, 2004

H density - n=10³ cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

PDR Model Comparison

H and H₂ density - n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

H and H₂ density - n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

H and H₂ density - n=10³ cm⁻³, χ =10⁵, variable T

5.-8. April, 2004

H and H₂ density - n=10³ cm⁻³, χ =10⁵, variable T

5.-8. April, 2004

PDR Model Comparison

H and H₂ density - n=10^{5.5} cm⁻³, χ =10

H and H₂ density - n=10^{5.5} cm⁻³, χ =10

PDR Model Comparison

H and H₂ density - n=10^{5.5} cm⁻³, χ =10⁵

5.-8. April, 2004

H and H₂ density - n=10^{5.5} cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

H and H₂ density - n=10^{5.5} cm⁻³, χ =10⁵, variable T

5.-8. April, 2004

PDR Model Comparison

5.-8. April, 2004

PDR Model Comparison

O and O₂ density

O and O₂ density - n=10³ cm⁻³, χ =10

5.-8. April, 2004

5.-8. April, 2004

PDR Model Comparison

O and O₂ density - n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

O and O₂ density - n=10³ cm⁻³, χ =10⁵

PDR Model Comparison

O and O_2 density - n=10^{5.5} cm⁻³, χ =10

5.-8. April, 2004

O and O₂ density - n=10^{5.5} cm⁻³, χ =10

PDR Model Comparison
O and O₂ density - n = $10^{5.5}$ cm⁻³, χ = 10^{5}

5.-8. April, 2004

O and O₂ density - n = $10^{5.5}$ cm⁻³, $\chi = 10^{5}$

PDR Model Comparison

OH and CH density

OH and CH density - n=10³ cm⁻³, χ =10

5.-8. April, 2004

OH and CH density - n=10³ cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

OH and CH density - n=10³ cm⁻³, χ =10⁵

OH and CH density - n=10³ cm⁻³, χ =10⁵

PDR Model Comparison

OH and CH density - n=10^{5.5} cm⁻³, χ =10

OH and CH density - n=10^{5.5} cm⁻³, χ =10

PDR Model Comparison

PDR Model Comparison

OH and CH density - n = $10^{5.5}$ cm⁻³, $\chi = 10^{5}$

PDR Model Comparison

He⁺, H⁺, and H₃⁺ density

He⁺, H^{+,} H₃⁺ density - n=10³ cm⁻³, χ =10

He^+ , H^+ , H_3^+ density - n=10³ cm⁻³, χ =10⁵, variable T

He⁺, H⁺, H₃⁺ density - n=10^{5.5} cm⁻³, χ =10¹, variable T

He⁺, H⁺, H₃⁺ density - n=10^{5.5} cm⁻³, χ =10⁵, variable T

electron density

electron density - n=10³ cm⁻³, χ =10

electron density - n=10³ cm⁻³, χ =10⁵

Model Results F1-F8

- photoreaction rates
- densities
- heating/cooling rates
- surface brightnesses

OI an CI cooling lines - n=10³ cm⁻³, χ =10

OI an CI cooling lines - $n=10^3$ cm⁻³, $\chi=10$

OI and CI cooling lines - n=10³ cm⁻³, χ =10¹, variable T

OI an CI cooling lines - n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

OI an CI cooling lines - n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004
OI and CI cooling lines - n=10³ cm⁻³, χ =10⁵, variable T

OI and CI cooling lines - $n=10^{5.5}$ cm⁻³, $\chi=10$

OI and CI cooling lines - $n=10^{5.5}$ cm⁻³, $\chi=10^{1}$, variable T

OI and CI cooling lines - $n=10^{5.5}$ cm⁻³, $\chi=10^{1}$, variable T

OI and CI cooling lines - n=10^{5.5} cm⁻³, χ =10⁵

OI and CI cooling lines - n=10^{5.5} cm⁻³, χ =10⁵

OI and CI cooling lines - $n=10^{5.5}$ cm⁻³, $\chi=10^{5}$, variable T

OI and CI cooling lines - $n=10^{5.5}$ cm⁻³, $\chi=10^{5}$, variable T

C⁺ (158µ) cooling and PE heating - n=10³ cm⁻³, χ =10

C⁺ (158µ) cooling and PE heating - n=10³ cm⁻³, χ =10

C⁺(158µ) cooling and PE heating - n=10³ cm⁻³, χ =10¹, variable T

C⁺(158µ) cooling and PE heating - n=10³ cm⁻³, χ =10⁵

PDR Model Comparison

5.-8. April, 2004

C⁺(158µ) cooling and PE heating - n=10³ cm⁻³, χ =10⁵

C⁺(158µ) cooling and PE heating - n=10³ cm⁻³, χ =10⁵, variable T

C⁺(158µ) cooling and PE heating - n=10³ cm⁻³, χ =10⁵, variable T

C⁺(158µ) cooling and PE heating - n=10^{5.5} cm⁻³, χ =10

5.-8. April, 2004

C⁺(158µ) cooling and PE heating - n=10^{5.5} cm⁻³, χ =10

C⁺(158µ) cooling and PE heating - n=10^{5.5} cm⁻³, χ =10⁵

C⁺(158µ) cooling and PE heating - n=10^{5.5} cm⁻³, χ =10⁵

C⁺(158µ) cooling and PE heating - n=10^{5.5} cm⁻³, χ =10⁵, variable T

5.-8. April, 2004

PDR Model Comparison

 H_{2} vibrational heating and gas-grain cooling - n=10³ cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

H₂ vibrational heating and gas-grain cooling - n=10³ cm⁻³, χ =10¹, variable T

PDR Model Comparison

H_2 vibrational heating and gas-grain cooling- n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

5.-8. April, 2004

PDR Model Comparison

5.-8. April, 2004

PDR Model Comparison

H₂ vib and gas-grain cooling - n=10^{5.5} cm⁻³, χ =10¹, variable T

5.-8. April, 2004

PDR Model Comparison

5.-8. April, 2004

PDR Model Comparison

H2 vib heating and gas-grain cooling - n=10^{5.5} cm⁻³, χ =10⁵, variable T

5.-8. April, 2004

PDR Model Comparison

Total heating/cooling

total heating and cooling - n=10³ cm⁻³, χ =10

5.-8. April, 2004

PDR Model Comparison

PDR Model Comparison

Total heating and cooling- n=10³ cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

5.-8. April, 2004

PDR Model Comparison

PDR Model Comparison

total heating and cooling - n=10^{5.5} cm⁻³, χ =10⁵

5.-8. April, 2004

PDR Model Comparison

PDR Model Comparison

Model Results F1-F8

- photoreaction rates
- densities
- heating/cooling rates
- surface brightnesses

	Bensch	CLOUDY	нтвкw	KOSMA	Leiden	Meudon	Sternberg	UCL_PDR
[CII] 158µ	1,58E-04	3,83E-05	3,79E-05	5,00E-05	2,43E-05	2,88E-05	6,42E-05	4,77E-05
[OI] 63µ	1,68E-05	3,02E-06	5,89E-06	1,19E-05	3,39E-06	6,34E-06	1,78E-05	9,77E-06
[OI] 146µ	9,24E-07	1,18E-07	1,70E-07	6,69E-07	4,86E-08	9,23E-08	5,88E-07	6,76E-05
[CI] 610µ	4,11E-07	1,55E-06	8,59E-07	5,84E-07	8,51E-07	1,04E-06	1,21E-06	4,51E-06
[CI] 370µ	6,82E-07	3,54E-06	2,15E-06	9,94E-07	2,21E-06	2,10E-06	3,54E-06	1,51E-05

	Bensch	CLOUDY	HTBKW	KOSMA	Leiden	Meudon	Sternberg	UCL_PDR
[CII] 158µ	5,14E-05	2,31E-05	3,51E-05	5,92E-05	2,43E-05	2,74E-06	6,42E-05	3,67E-05
[OI] 63µ	1,67E-05	3,80E-06	5,28E-06	1,15E-05	3,39E-06	6,34E-06	1,78E-05	1,29E-04
[OI] 146µ	9,33E-07	1,60E-07	7,95E-09	7,11E-07	4,86E-08	9,23E-08	5,88E-07	3,45E-07
[CI] 610µ	1,18E-06	1,56E-06	8,81E-07	1,48E-06	8,51E-07	1,04E-06	1,21E-06	2,32E-06
[CI] 370µ	2,13E-06	3,56E-06	2,27E-06	2,74E-06	2,21E-06	2,10E-06	3,54E-06	5,40E-06

	Bensch	CLOUDY	нтвкw	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	1,58E-04	8,93E-05	9,10E-05	1,63E-04	1,16E-04	9,78E-05	8,77E-05
[OI] 63µ	1,68E-05	3,80E-06	7,59E-06	1,23E-05	9,08E-06	2,03E-05	1,54E-05
[OI] 146µ	9,24E-07	8,48E-08	3,93E-07	7,01E-07	1,16E-07	6,43E-07	1,94E-04
[CI] 610µ	4,11E-07	8,53E-07	2,28E-06	4,93E-07	3,20E-06	3,81E-06	4,56E-06
[CI] 370µ	6,82E-07	1,79E-06	6,35E-06	8,35E-07	7,41E-06	1,09E-05	1,53E-05

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	1,71E-04	6,72E-05	9,29E-05	1,74E-04	1,13E-04	9,78E-05	1,31E-04
[OI] 63µ	1,63E-05	4,31E-06	8,04E-06	1,22E-05	1,12E-05	2,03E-05	1,53E-04
[OI] 146µ	9,85E-07	1,46E-07	7,47E-08	8,02E-07	1,73E-07	6,43E-07	4,41E-07
[CI] 610µ	4,00E-06	2,49E-06	2,30E-06	4,97E-06	2,89E-06	3,81E-06	4,38E-06
[CI] 370µ	6,82E-07	1,79E-06	6,62E-06	8,35E-07	6,53E-06	1,09E-05	1,19E-05

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	2,37E-05	2,32E-05	1,66E-05	4,17E-05	2,34E-05	2,12E-05	1,98E-06
[OI] 63µ	8,64E-04	2,08E-04	2,85E-04	7,57E-04	4,94E-04	3,84E-04	4,98E-05
[OI] 146µ	8,23E-05	7,70E-06	9,65E-06	6,26E-05	8,63E-06	2,02E-05	4,81E-05
[CI] 610µ	1,60E-07	1,57E-06	1,20E-07	3,07E-07	3,03E-07	2,33E-07	2,13E-07
[CI] 370µ	6,78E-07	6,49E-06	5,11E-07	1,30E-06	1,21E-06	9,86E-07	9,00E-07

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	2,43E-05	1,37E-05	1,72E-05	3,90E-05	2,58E-05	2,12E-05	3,21E-05
[OI] 63µ	8,62E-04	2,52E-04	2,71E-04	7,67E-04	5,65E-04	3,84E-04	4,98E-04
[OI] 146µ	8,40E-05	1,33E-05	6,11E-06	6,59E-05	1,32E-05	2,02E-05	3,73E-05
[CI] 610µ	1,60E-07	1,20E-06	1,31E-07	2,80E-07	3,25E-07	2,33E-07	6,13E-07
[CI] 370µ	6,78E-07	6,49E-06	5,50E-07	1,18E-06	1,36E-06	9,86E-07	2,58E-06

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	2,51E-04	1,59E-04	1,21E-04	3,06E-04	1,85E-04	1,46E-04	1,14E-04
[OI] 63µ	8,78E-04	2,61E-04	2,05E-04	7,88E-04	5,64E-04	3,76E-04	2,42E-04
[OI] 146µ	8,65E-05	1,33E-05	1,42E-05	7,15E-05	1,30E-05	2,76E-05	6,48E-04
[CI] 610µ	2,88E-07	1,80E-06	9,26E-07	5,78E-07	7,33E-07	1,48E-06	1,46E-06
[CI] 370µ	1,22E-04	7,41E-06	3,87E-06	2,44E-06	3,06E-06	6,16E-06	6,04E-06

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	Sternberg	UCL_PDR
[CII] 158µ	2,77E-04	1,24E-04	1,23E-04	3,16E-04	1,94E-04	1,46E-04	2,21E-04
[OI] 63µ	8,82E-04	2,70E-04	3,11E-04	8,09E-04	6,14E-04	3,76E-04	5,07E-04
[OI] 146µ	9,06E-05	1,56E-05	1,09E-05	7,82E-05	1,78E-05	2,76E-05	4,16E-05
[CI] 610µ	6,28E-07	1,42E-06	9,20E-07	9,10E-07	6,85E-07	1,48E-06	3,11E-06
[CI] 370µ	1,22E-04	5,89E-06	3,82E-06	2,44E-06	2,86E-06	6,16E-06	1,28E-05

	Bensch	CLOUDY	нтвкw	KOSMA	Meudon	UCL_PDR
[CII] 158µ	1,84E-05	6,20E-06	4,33E-05	2,50E-05	1,11E-05	2,11E-05
[OI] 63µ	1,16E-06	2,11E-08	6,29E-06	1,59E-06	2,46E-07	1,42E-06
[OI] 146µ	2,17E-08	1,77E-10	2,66E-07	4,59E-08	1,82E-09	1,09E-05
[CI] 610µ	4,22E-07	2,64E-07	8,88E-07	5,19E-07	5,10E-07	4,10E-06
[CI] 370µ	2,03E-07	8,10E-05	1,03E-06	2,33E-07	1,65E-07	1,27E-05

	Bensch	CLOUDY	НТВКЖ	KOSMA	Meudon	UCL_PDR
[CII] 158µ	6,27E-05	2,02E-05	3,90E-05	2,96E-05	2,68E-05	5,59E-05
[OI] 63µ	1,74E-05	1,03E-06	4,20E-06	2,41E-06	3,90E-06	1,34E-05
[OI] 146µ	5,32E-07	3,97E-08	3,49E-08	7,93E-08	8,21E-08	4,90E-07
[CI] 610µ	6,50E-07	6,38E-07	8,00E-07	6,58E-07	6,70E-07	1,25E-06
[CI] 370µ	2,03E-07	4,67E-07	8,82E-07	2,33E-07	3,35E-07	1,32E-06

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	UCL_PDR
[CII] 158µ	4,86E-04	1,22E-04	3,98E-04	5,39E-04	2,34E-04	4,89E-05
[OI] 63µ	6,72E-04	1,59E-05	1,54E-03	6,98E-04	3,61E-05	3,15E-06
[OI] 146µ	1,78E-05	3,74E-07	1,36E-04	3,67E-05	4,20E-07	2,32E-05
[CI] 610µ	4,13E-07	2,32E-05	2,77E-06	4,42E-07	1,76E-06	4,57E-06
[CI] 370µ	2,20E-07	9,34E-08	7,08E-06	2,13E-07	1,99E-06	1,40E-05

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	UCL_PDR
[CII] 158µ	6,01E-04	1,78E-04	4,06E-04	6,11E-04	2,64E-04	5,23E-04
[OI] 63µ	2,06E-03	6,49E-05	1,41E-03	2,03E-03	9,60E-05	1,46E-03
[OI] 146µ	7,73E-05	3,02E-06	1,05E-04	1,29E-04	1,91E-06	6,40E-05
[CI] 610µ	7,38E-07	2,07E-06	2,70E-06	9,27E-07	2,05E-06	2,07E-06
[CI] 370µ	2,20E-07	9,34E-08	6,87E-06	2,13E-07	2,37E-06	2,89E-06

	Bensch	CLOUDY	HTBKW	KOSMA	Meudon	UCL_PDR
[CII] 158µ	1,38E-05	9,21E-06	7,41E-06	1,53E-05	1,19E-05	2,30E-05
[OI] 63µ	3,46E-05	1,66E-05	6,55E-06	7,34E-06	1,67E-05	3,70E-05
[OI] 146µ	1,20E-07	1,62E-07	1,08E-08	7,27E-08	8,27E-08	2,77E-07
[CI] 610µ	1,76E-07	1,12E-06	1,49E-07	3,12E-07	3,13E-07	6,01E-07
[CI] 370µ	5,27E-07	2,98E-06	3,94E-07	8,05E-07	7,82E-07	1,86E-06

[CI] 370µ

PDR Model Comparison

3,64E-07

	CLOUDY	нтвкw	KOSMA	Meudon	UCL_PDR
[CII] 158µ	5,74E-05	6,81E-04	1,03E-03	6,50E-04	1,07E-03
[OI] 63µ	2,92E-02	3,34E-02	4,28E-02	3,85E-02	8,29E-02
[OI] 146µ	1,28E-03	1,39E-03	1,80E-03	1,23E-03	1,95E-03
[CI] 610µ	1,42E-06	7,01E-07	5,03E-07	5,79E-07	2,73E-06
[CI] 370µ	7,41E-06	4,54E-06	2,15E-06	3,06E-06	1,22E-05

Model Results F5-F8

• temperatures

PDR Model Comparison

PDR Model Comparison

PDR Model Comparison

PDR Model Comparison

PDR Model Comparison

n(H) vs. $N(H_2)$

n(H) vs N(H₂) - n=10³ cm⁻³, χ =10

n(H) vs. N(H₂) - n=10³ cm⁻³, χ =10¹, variable T

n(H) vs N(H₂) - n=10³ cm⁻³, χ =10⁵

n(H) vs. N(H₂) - n=10³ cm⁻³, χ =10⁵, variable T

1000000

n(H) vs. N(H₂) - n=10^{5.5} cm⁻³, χ =10⁵, variable T

$n(H_2)$ vs. $N(H_2)$

 $n(H_2)$ vs $N(H_2)$ - n=10³ cm⁻³, χ =10

 $n(H_2)$ vs. $N(H_2)$ - $n=10^3$ cm⁻³, $\chi=10^1$, variable T

 $n(H_2)$ vs $N(H_2)$ - n=10³ cm⁻³, χ =10⁵

 $n(H_2)$ vs. $N(H_2)$ - n=10³ cm⁻³, χ =10⁵, variable T

 $n(H_2)$ vs. $N(H_2)$ - n=10^{5.5} cm⁻³, χ =10⁵, variable T

