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Diffuse Gas
Overhead View  n~10'-102cm?
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FIR Emission from the ISM

Dominated by PDRs =» FUV controls
heating/chemistry to A, ~ 5-10 in neutral
gas

* Neutral atomic diffuse/translucent clouds (A < 1-2)
e Surfaces of Molecular clouds

H =» H, transition (A, ~ 1- few)
e Clumpy GMCs - FUV permeates clouds
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“All the gas 1n a galaxy i1s 1n a PDR



Model Inputs

Geometry - > UV Field and Penetration

a Grains/PAHs
N

H, Formation

Chemistry

A

v
Line transfer/cooling

Cosmic Ray Ionization Photoelectric Heating



PDR Schematic

Photodissociation Region
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Outline

Radiative transfer
— FUV

— dust emission

Role of Molecular Hydrogen
— formation

— detailed treatment of line emission
Heating & Cooling
Chemistry



FUV Penetration

e Continuum attenuated by dust

* Depends on absorption/scattering properties
measured 1n diffuse clouds (e.g. Draine & Lee 84)

* Roberge et al. (1991) and van Dishoeck et al
(1988) calculated unshielded
photodissociation/photoionization rates in local
ISRF, fit decrease 1n rates with increasing Ay, ...
good for R=3.1! (N.B. Dense clouds have higher
RAZINGEY



Photodlssomatlon of H,O
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Spherical Geometry

Stoerzer et al. 1996

- plane-parallel, N=1.9*10%cm*

0.020 0.030 0.040
distance from clump surface [pc]



Dust Emission

 Usually not the goal of PDR models =»
very approximate treatments

 e.g.: calculate T, at surface and 7 to
reemitted surface IR at all other depths

» Observations (esp. extragalactic) would

benefit from more accurate modeling =» get
G, from the SED



Molecular Hydrogen

« Key to structure of PDRs

— Dominant species (once it forms)
— Kicks off all molecular chemistry
— Heats gas under certain conditions

— Formation pumping can drive chemistry
——



H, Formation

* Gould & Salpeter (1963) recognized 1nefficiency
of gas-phase H, formation =¥ suggested grains as
catalytic sites

» Hollenbach & Salpeter (1971) : H must be
chemisorbed to allow efficient formation at high
grain temperature

* Numerous attempts at laboratory, theoretical, and
observations constraints on formation rate ==>



Amongst the rates are....

e R=3x10"8fS T'? cm’ s”! where f=f
(T4,E,), S=S(T,T,) [Hollenbach & Salpeter
71, Sternberg & Dalgarno 93]

* Same, but with assumption that {,S=1

* 3x10""7 cm’ 5™ under assumption that T, ~
100 K 1n formation region and other
properties are too poorly known anyway!



H, formed but grains Thermal hopping allows H
too cold to find chemisorbed H

==> sites blocked
Warm grains evaporate H

before recombination
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Observational Constraints on H,
Formation

n,=10% cm™
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Self—shleldmg

R giss = foniela x e (00O R diss(0)

diss S

where
f=1 N(H,) <10"cm™
f~(N(H,)/10'* cm2 )07

N(H,) > 10'* cm™

y/n < 10-2 ==> self-shielding
v/n > 102 ==> dust shielding

1013 1019 1020 1021 1022
Ny(cm™2)




H, Pumping/dissociation/heating

*FUV pumping of H, in Lyman/Werner bands
(11.3-13.6 eV)

* ~90% fluoresce to to bound vibrational state with

~ 2eV ==> emitted in IR lines (low n)

or heat gas by collisional deexcitation (high n)

~ 10% fluoresce to vibrational continuum
==> dissociation

Very detailed treatment: Le Bourlot et al. 1993,

==> full accounting

10-15%
Dissociation

Simplified : deexcitation into “pseudo-level”

IR { }Collisiona' ==>0K for approximate heating,

Fluorescence Deexcitation, Heating

n<n_ ~10%5 cm3 n>n : 0
or cr bad for specific line strengths




Gas Heating & Cooling

* Heating
— Grain photoelectric
— H, formation
— CcOSmiC rays
— grain drift
e Cooling

— line emission



Heating Processes

e
S
[ =]
[ =]

Photoelectric effect on grains Le Bourlot et al 1993
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Photoelectric Heating

Dust absorbs most of the FUV: 64, > > G,

FUV —/\/> */

a~4-150 A

99%: photon absorbed b;dust =» warm dust

IR Continuum

[ 4

1% : “photoelectric ejection” =» warm gas
\%
/'
Collides w/ gas —
gas heating — line cooling

=> gas cooling/dust cooling = line/continuum ~ 1%



Photoelectric Heating
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Cosmic Rays

Observation

Le Petit, Roueff & Herbst 2004




Chemistry

By definition, influenced by FUV photons
(unlike dense cores where CR’s dominate)

Photo-reactions

H, formation kicks off all other molecular
species

C" and O maintained to high depths
Vibrationally-excited H,



The Chemical Effects of PAHs

n=10% em™®, G,=5, T=50 K

PAH + e =—=—> PAH-
PAH + Ct==>PAH + C
Result:




Example: Rates for OH + O
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Example: H,O in PDRs

e Formation:
H.O"+e —>H,O+H (0.050.25)
— OH+2H (0.65 + 0.75)
— O+H,+H (0.30 ~ 0.00)
e Destruction
H,O + FUV photon - OH + H
C"+H,0O—-> HCO"+H



W31 H,O Absorption: First
Detection of H,O 1n Diffuse Gas

tv
Cn

" Coincident w/ OH Absorption

! W“H“M\r %ﬂw

oo

B
on
T T

ja—y

o
by

s
i)
o=

[F ]

d

L
g

P4

=
a

g

=

=

)
e

=l

o
o
g

Py
e
=]

i

b

L
—

i
=
=

QO

50 100
L3R Velocity (km/s)




-y
O

-
o

‘Eal_"
s
(W]

e,
=y

-+
[
=
1k

M
=
=

=
o

]

T

L
=0
2

=

15
Log (H,0 Column Density / cm™2)




T IIIII|T| T IIIII|T| T IIIII|T| T IIIIII| T IIIII|T| T IIIIIII| UNLBLLLAL |

)
5& \

K IIIII|T| T IIIIII‘ T IIIII|T| T IIIIIIF




Modeling

sparse and infrequent abseryations

| abseryational errors I incarrect interpretation of ohsen ations
theoretical misunderstanding F

v ersimplified models

| computer models Il— controversy ﬂﬂﬁ; rnerfannetrgee?;ig

code unrealistic
BITOrs assumptions

| crude diagnostic tools I—»’m—»| further misunderstanding I

coincidental agreement between
theory and ohservation

management
directives

publication




