

PDR Theory: Overview Michael Kaufman - SJSU Physics & NASA Ames

Collaborators D. Hollenbach (Ames) M. Wolfire (U Md)

D. Neufeld (JHU) R. Plume (U Calgary)

Dense Gas $\mathbf{n} \sim 10$ 4 cm⁻³

Overhead View Diffuse Gas ${\rm n}\,{\sim}10^{\rm 1}$ – 10 2 cm⁻³

FIR Emission from the ISMDominated by $\text{PDRs} \rightarrow \text{FUV}$ controls heating/chemistry to $A_v \sim 5$ -10 in neutral gas

- •Neutral atomic diffuse/translucent clouds ($A_V \le 1$ -2)
- Surfaces of Molecular clouds $H \rightarrow H_2$ transition (A_v ~ 1- few)
- Clumpy GMCs FUV permeates clouds

"All the gas in a galaxy is in a PDR!"

Model Inputs

Geometry

UV Field and Penetration

Grains/PAHs

 \rm{H}_{2} Formation

Chemistry

Line transfer/cooling

Cosmic Ray Ionization

Photoelectric Heating

Outline

- Radiative transfer
	- FUV
	- dust emission
- Role of Molecular Hydrogen
	- formation
	- detailed treatment of line emission
- Heating & Cooling
- Chemistry

FUV Penetration

- Continuum attenuated by dust
- \bullet Depends on absorption/scattering properties measured in diffuse clouds (e.g. Draine & Lee 84)
- Roberge et al. (1991) and van Dishoeck et al (1988) calculated unshielded photodissociation/photoionization rates in local ISRF, fit decrease in rates with increasing A_V ... good for R=3.1! (N.B. Dense clouds have higher R values)

Spherical Geometry

Dust Emission

- Usually not the goal of PDR models \rightarrow very approximate treatments
- e.g.: calculate T_d at surface and τ to reemitted surface IR at all other depths
- Observations (esp. extragalactic) would benefit from more accurate modeling \rightarrow get G_0 from the SED

Molecular Hydrogen

• Key to structure of PDRs Dominant species (once it forms) Kicks off all molecular chemistry Heats gas under certain conditions Formation pumping can drive chemistry \equiv \sim Get it right!

\rm{H}_{2} Formation

- Gould & Salpeter (1963) recognized inefficiency of gas-phase H_2 formation \rightarrow suggested grains as catalytic sites
- Hollenbach & Salpeter (1971) : H must be chemisorbed to allow efficient formation at high grain temperature
- Numerous attempts at laboratory, theoretical, and observations constraints on formation rate ==>

Amongst the rates are….

- $R = 3x10^{-18}$ f S $T^{1/2}$ cm³ s^{-1} where $f = f$ (T_d, E_b) , S=S (T, T_d) [Hollenbach & Salpeter 71, Sternberg & Dalgarno 95]
- Same, but with assumption that $f,S=1$
- $3x10^{-17}$ cm 3 s⁻¹ under assumption that T_{gas} \sim 100 K in formation region and other properties are too poorly known anyway!

\rm{H}_{2} formed but grains too cold ==> sites blocked

Thermal hopping allows H to find chemisorbed H

Warm grains evaporate H before recombination

Observational Constraints on H 2Formation

Habart et al. 2004

 ${\rm R \sim 3x10^{-17}}$ – $2x10^{-16}$ ${\rm cm^3~s^{-1}}$

\rm{H}_{2} Pumping/dissociation/heating

•FUV pumping of H_2 in Lyman/Werner bands $(11.3-13.6 \text{ eV})$ • \sim 90% fluoresce to to bound vibrational state with \sim 2eV = \Rightarrow emitted in IR lines (low n) **or** heat gas by collisional deexcitation (high n) \sim 10% fluoresce to vibrational continuum \Rightarrow dissociation Very detailed treatment: Le Bourlot et al. 1993, \equiv > full accounting Simplified : deexcitation into "pseudo-level" ==>OK for approximate heating, bad for specific line strengths

Gas Heating & Cooling

• Heating Grain photoelectric \rm{H}_{2} formation cosmic rays grain drift • Cooling – line emission

Heating Processes

Photoelectric Heating

Dust absorbs most of the FUV: $\sigma_{\text{dust}} >> \sigma_{\text{gas}}$ FUV \rightarrow $\sqrt{a} \sim 4 - 150 \text{ Å}$

99%: photon absorbed by dust \rightarrow warm dust

v

1%: "photoelectric ejection" \rightarrow warm gas

Collides w/ gas → *gas heating* → *line cooling*

IR Continuum

 \rightarrow gas cooling/dust cooling = line/continuum ~ 1%

Photoelectric Heating

Cosmic Rays

Chemistry

- By definition, influenced by FUV photons (unlike dense cores where CR's dominate)
- Photo-reactions
- H_2 formation kicks off all other molecular species
- \bullet C^+ and O maintained to high depths
- Vibrationally-excited \rm{H}_{2}

The Chemical Effects of PAHs

 $PAH + e \equiv \Rightarrow PAH$ $\mathrm{PAH^{\text{-}}} + \mathrm{C^{\text{+}}} \Longrightarrow \mathrm{PAH} + \mathrm{C}$ Result: N(C) up by 2, N(C +) down by 2 $\rm I(C)/I(C^+)$ up by 4

Example: Rates for OH + O

Example: H₂O in PDRs

- Formation:
	- H_3O^+ + e⁻ \rightarrow H₂O + H (0.05 *or* 0.25) \rightarrow OH + 2H (0.65 *or* 0.75) \rightarrow 0 + H₂ + H (0.30 *or* 0.00)
- Destruction H_2O + FUV photon \rightarrow OH + H C^+ + $H_2O \rightarrow HCO^+$ + H

$W51 H₂O Absorption: First$ Detection of H₂O in Diffuse Gas

Modeling

