

PDR Theory: Overview Michael Kaufman - SJSU Physics & NASA Ames

<u>Collaborators</u> D. Hollenbach (Ames) M. Wolfire (U Md)

D. Neufeld (JHU) R. Plume (U Calgary) Dense Gas $n \sim 10^4 \text{ cm}^{-3}$

Overhead View $n \sim 10^1 - 10^2 \text{ cm}^{-3}$

Diffuse Gas

FIR Emission from the ISM Dominated by PDRs → FUV controls heating/chemistry to A_v ~ 5-10 in neutral gas

- Neutral atomic diffuse/translucent clouds ($A_V \le 1-2$)
- Surfaces of Molecular clouds
 H → H₂ transition (A_v ~ 1- few)
- Clumpy GMCs FUV permeates clouds

"All the gas in a galaxy is in a PDR!"

Model Inputs

Geometry

UV Field and Penetration

Grains/PAHs

 H_2 Formation

Chemistry

Line transfer/cooling

Cosmic Ray Ionization

Photoelectric Heating

PDR Schematic

Outline

- Radiative transfer
 - FUV
 - dust emission
- Role of Molecular Hydrogen
 - formation
 - detailed treatment of line emission
- Heating & Cooling
- Chemistry

FUV Penetration

- Continuum attenuated by dust
- Depends on absorption/scattering properties measured in diffuse clouds (e.g. Draine & Lee 84)
- Roberge et al. (1991) and van Dishoeck et al (1988) calculated unshielded photodissociation/photoionization rates in local ISRF, fit decrease in rates with increasing A_V... good for R=3.1! (N.B. Dense clouds have higher R values)

Spherical Geometry

Dust Emission

- Usually not the goal of PDR models → very approximate treatments
- e.g.: calculate T_d at surface and τ to reemitted surface IR at all other depths
- Observations (esp. extragalactic) would benefit from more accurate modeling → get G₀ from the SED

Molecular Hydrogen

Key to structure of PDRs

Dominant species (once it forms)
Kicks off all molecular chemistry
Heats gas under certain conditions
Formation pumping can drive chemistry
=>Get it right!

H₂ Formation

- Gould & Salpeter (1963) recognized inefficiency of gas-phase H₂ formation → suggested grains as catalytic sites
- Hollenbach & Salpeter (1971) : H must be chemisorbed to allow efficient formation at high grain temperature
- Numerous attempts at laboratory, theoretical, and observations constraints on formation rate ==> KEY to PDR structure

Amongst the rates are....

- $R = 3x10^{-18} f S T^{1/2} cm^3 s^{-1}$ where f = f(T_d, E_b), $S = S(T, T_d)$ [Hollenbach & Salpeter 71, Sternberg & Dalgarno 95]
- Same, but with assumption that f,S=1
- $3 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1}$ under assumption that $\overline{T}_{gas} \sim 100 \text{ K}$ in formation region and other properties are too poorly known anyway!

H₂ formed but grains too cold ==> sites blocked

Thermal hopping allows H to find chemisorbed H

Warm grains evaporate H before recombination

Observational Constraints on H₂ Formation

Habart et al. 2004

 $R \sim 3x10^{-17} - 2x10^{-16} \text{ cm}^3 \text{ s}^{-1}$

H₂ Pumping/dissociation/heating

•FUV pumping of H₂ in Lyman/Werner bands (11.3-13.6 eV)• ~90% fluoresce to to bound vibrational state with $\sim 2eV \implies$ emitted in IR lines (low n) **or** heat gas by collisional deexcitation (high n) $\sim 10\%$ fluoresce to vibrational continuum ==> dissociation Very detailed treatment: Le Bourlot et al. 1993, ==> full accounting Simplified : deexcitation into "pseudo-level" ==>OK for approximate heating, bad for specific line strengths

Gas Heating & Cooling

- Heating

 Grain photoelectric
 - H₂ formation
 - cosmic rays
 - grain drift
- Cooling
 - line emission

Heating Processes

Photoelectric Heating

a ~ 4 - 150 Å

Dust absorbs most of the FUV: $\sigma_{dust} > \sigma_{gas}$

FUV

99%: photon absorbed by dust \rightarrow warm dust

1% : "photoelectric ejection" \rightarrow warm gas

Collides w/ gas \rightarrow gas heating \rightarrow line cooling

IR Continuum

 \rightarrow gas cooling/dust cooling = line/continuum ~ 1%

Photoelectric Heating

Cosmic Rays

Chemistry

- By definition, influenced by FUV photons (unlike dense cores where CR's dominate)
- Photo-reactions
- H₂ formation kicks off all other molecular species
- C⁺ and O maintained to high depths
- Vibrationally-excited H₂

The Chemical Effects of PAHs

 $PAH + e \implies PAH^{-}$ $PAH^{-} + C^{+} \implies PAH + C$ Result: N(C) up by 2, $N(C^{+}) down by 2$ $I(C)/I(C^{+}) up by 4$

Example: Rates for OH + O

Example: H₂O in PDRs

- Formation:
 - $\begin{array}{ll} H_{3}O^{+} + e^{-} \rightarrow H_{2}O + H & (0.05 \text{ or } 0.25) \\ \rightarrow & OH + 2H & (0.65 \text{ or } 0.75) \\ \rightarrow & O + H_{2} + H & (0.30 \text{ or } 0.00) \end{array}$
- Destruction $H_2O + FUV \text{ photon} \rightarrow OH + H$ $C^+ + H_2O \rightarrow HCO^+ + H$

W51 H_2O Absorption: First Detection of H_2O in Diffuse Gas

Modeling

