

Prospects for PDR observations

Volker Ossenkopf

SRON National Institute for Space Research, Groningen

1. Physikalisches Institut der Universität zu Köln

Improvements of the observing technology

Properties of each instrument:

- new frequencies
- higher sensitivity
- better spatial resolution
- better spectral resolution
- arrays

Spitzer, APEX, HIFI, ALMA, ...

New observations

PDR related questions

Spitzer, APEX, HIFI, ALMA, ...

New observations

PDR related questions

faint and diffuse clouds

low density, low χ PDRs

Spitzer, APEX, HIFI, ALMA, ...

New observationsPDR related questionsfaint and diffuse cloudslow density, low χ PDRsabsorption lines from PDRscool parts, detailed radiative transfer

Spitzer, APEX, HIFI, ALMA, ...

New observations

PDR related questions

low density, low χ PDRs

cool parts, detailed radiative transfer

faint and diffuse clouds

absorption lines from PDRs

high-redshift galaxies

V.Ossenkopf

Galaxies as PDRs

Extended CO 7-6 in M82 observed with the HHT (Mao et al. 2000)

Spitzer, APEX, HIFI, ALMA, ...

New observations

PDR related questions

low density, low χ PDRs

cool parts, detailed radiative transfer

faint and diffuse clouds

absorption lines from PDRs

high-redshift galaxies

V.Ossenkopf

Spitzer, APEX, HIFI, ALMA, ...

New observationsPDR related questionsfaint and diffuse cloudslow density, low χ PDRsabsorption lines from PDRscool parts, detailed radiative transfer

high-redshift galaxies interpretation of whole galaxies as PDRs

Spitzer, APEX, HIFI, ALMA, ...

New observationsPDR related questionsfaint and diffuse cloudslow density, low χ PDRsabsorption lines from PDRscool parts, detailed radiative transfer

high-redshift galaxies

interpretation of whole galaxies as PDRs

The We have to provide knowledge on the "average Galactic PDRs", not just the bright ones which are mainly observed until now.

SOFIA, HIFI, ...

New observations

PDR related questions

lines and continuum quasi-simultaneously

The full FIR spectrum "at one shot"

Schematic view of the spectrum of M82 (Phillips & Keene 1992).

We get simultaneously:

- molecular rotational lines
- atomic fine structure lines
- spectral energy distribution of the continuum
- dust features in the continuum

The and continuum interpretation has to go hand in hand.

SOFIA, HIFI, ...

New observations

PDR related questions

lines and continuum quasi-simultaneously

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

PDR related questions

interplay with continuum
(FIR pumping, PAH excitation, ice destruction ...)
all major PDR cooling lines

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

Search for the complete chemical inventory

First systematic frequency surveys in the submm (Orion KL, Schilke et al. 2002)

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

molecule	transition	frequency	lower level		$\kappa_{\rm LTE, rel}$ []	$m/s cm^2$]		bonus	comments
		[GHz]	energy [K]	at 10 K	at 50 K	at 100 K	at 300 K	line	
CII	${}^{2}P_{3/2} - {}^{2}P_{1/2}$	1900.545	0	$7.5 10^{-18}$	4.810^{-18}	2.510^{-18}	8.010^{-19}		
СН	${}^{2}\Pi_{3/2}$ 1,2 ⁻ -	536.761	0	2.210^{-14}	3.810^{-15}	1.210^{-15}	1.510^{-16}		${}^{2}\Pi_{3/2}$ 1,1 ⁻ - ${}^{2}\Pi_{1/2}$ 1,1 ⁻ and ${}^{2}\Pi_{3/2}$ 1,1 ⁻ -
	${}^{2}\Pi_{1/2}^{-1}$ 1,1 ⁺								${}^{2}\Pi_{1/2}$ 1,0 ⁺ only 20 MHz apart
	$^{2}\Pi_{5/2}^{'}$ 2,3 ⁻ -	1656.961	26	8.810^{-15}	2.110^{-14}	1.110^{-14}	1.910^{-15}	1	blended with ${}^{2}\Pi_{5/2}$ 2,2 ⁻ - ${}^{2}\Pi_{3/2}$ 1,2 ⁺ and
	$^{2}\Pi_{3/2}^{-}$ 1,2 ⁺								${}^{2}\Pi_{5/2}$ 2,2 ⁻ - ${}^{2}\Pi_{3/2}$ 1,1 ⁺ , simultaneously with
	,								$H_3O^+ 1_{1,1} - 1_{1,0}$
CH^+	1-0	835.07	0	1.210^{-13}	2.410^{-14}	7.710^{-15}	1.010^{-15}		
	2-1	1669.16	40	4.310^{-15}	3.110^{-14}	1.710^{-14}	3.310^{-15}		
NH	$^{3}\Sigma^{-}$ 1, 1/2 – 0, 1/2	974.479	0	$6.5 10^{-14}$	1.610^{-14}	5.510^{-15}	3.910^{-16}	1	blended with ${}^{3}\Sigma^{-}$ 1,3/2 - 0,1/2, ${}^{3}\Sigma^{-}$ 1,3/2 -
									0,3/2, lines between 974.531 and 974.607 GHz si-
									multaneously, $H_2O 2_{0,2} - 1_{1,1}$ in upper sideband
NH+	$^{2}\Pi_{1/2c} 3/2, 5/2, 3-$	1012.524	0	4.710^{-16}	7.210^{-15}	4.010^{-15}	$7.5 10^{-16}$		blended ${}^{2}\Pi_{1/2c} 3/2, 3/2, 2-1/2, 1/2, 1$; four other
	1/2, 3/2, 2								transitions only 30-50 MHz apart
NH ₃	$1_0 - 0_0$	572.498	0.5	1.710^{-13}	1.110^{-14}	2.310^{-15}	1.710^{-16}		
	$2_1 - 1_1$	1168.452	24	1.310^{-14}	8.410^{-15}	2.510^{-15}	2.310^{-16}		
OH^+	${}^{3}\Sigma^{-}$ 1,2,5/2 –	971.804	0	3.210^{-13}	8.110^{-14}	2.710^{-14}	3.610^{-15}	\checkmark	blended with ${}^{3}\Sigma^{-}$ 1,2,3/2 - 0,1,1/2;
	0, 1, 3/2								${}^{3}\Sigma^{-}$ 1,2,3/2 - 0,1,3/2 only 15 MHz apart,
									simultaneously with NH
H_3O^+	$1_{1,1} - 1_{1,0}$	1655.814	0	6.510^{-14}	1.710^{-14}	4.410^{-15}	3.510^{-16}		$2_{2,1} - 2_{2,0}$ simultaneously at 1657.236 GHz
	$0_{0,1} - 1_{0,0}$	984.697	7	4.110^{-14}	1.510^{-14}	3.810^{-15}	2.810^{-16}	\checkmark	simultaneously with H ₂ O $2_{0,2} - 1_{1,1}$
p-H ₂ O	$1_{1,1} - 0_{0,0}$	1113.343	0	4.210^{-13}	8.610^{-14}	2.010^{-14}	1.610^{-15}		
	$2_{0,2} - 1_{1,1}$	987.927	53	1.510^{-15}	2.110^{-14}	8.210^{-15}	9.010^{-16}		
	$2_{1,1} - 2_{0,2}$	752.033	101	3.610^{-17}	1.910^{-14}	1.110^{-14}	1.610^{-15}		
o-H ₂ O	$1_{1,0} - 1_{0,1}$	556.936	0	1.910^{-13}	4.210^{-14}	1.210^{-14}	1.110^{-15}	\checkmark	NH ₃ $1_0 - 0_0$ in the upper sideband
	$2_{1,2} - 1_{0,1}$	1669.905	0	2.010^{-13}	8.010^{-14}	2.910^{-14}	3.010^{-15}	\checkmark	simultaneously with $CH^+ 2 - 1$
	$3_{0,3} - 2_{1,2}$	1716.770	114	7.710^{-17}	1.910^{-14}	1.510^{-14}	2.810^{-15}		
HDO	$1_{1,1} - 0_{0,0}$	893.639	0	2.710^{-13}	2.110^{-14}	4.610^{-15}	3.410^{-16}		
$H_2^{18}O$	$1_{1,1} - 0_{0,0}$	1101.698	0	4.210^{-13}	8.510^{-14}	2.010^{-14}	1.610^{-15}	\checkmark	$H_2O 1_{1,1} - O_{0,0}$ in the upper sideband
OH	$2\Pi_{1/2} 3/2 - 1/2$	1834.747	181	6.510^{-22}	9.610^{-16}	2.910^{-15}	1.510^{-15}	\checkmark	CO 16-15 in the upper sideband
CO	10-9	1151.985	249	5.810^{-26}	3.710^{-18}	1.410^{-17}	1.010^{-17}		
10	16-15	1841.345	663	3.210^{-32}	1.810^{-21}	4.910^{-19}	5.910^{-18}		
¹³ CO	10-9	1101.350	238	1.710^{-25}	4.310^{-18}	1.510^{-17}	9.610^{-18}	\checkmark	$H_2O 1_{1,1} - O_{0,0}$ in the upper sideband
	15-14	1650.768	555	$7.5 10^{-31}$	1.410^{-20}	1.210^{-18}	7.010^{-18}	\checkmark	H_3O^+ 1 _{1,1} – 1 _{1,0} in the upper sideband

_

Table 2: Line candidates for HIFI observations to trace the chemical and physical structure of PDRs and shocks

Uncertainties in hydride intensities

Species	Freq.	Relative Abundance	T_B^{\dagger} [K]
	[GHz]	at (0,0)	at (0,0)
CII	1900.545	1.0E-05	6.5E+01 (3.6E+1)
CH	536.761	1.5E-09	2.0E+00
CH	1656.961	1.5E-09	6.9E+00
CH^+	835.070	9.3E-13	2.5E-03 (1.6E-1)
CH^+	1669.160	9.3E-13	8.0E-03 (2.3E-2)
NH	974.479	5.6E-10	2.2E+00
NH^+	1012.524	2.2E-13	4.5E-04
NH3	572.498	4.3E-11	2.1E-01
NH ₃	1168.452	4.3E-11	4.3E-03
OH^+s	971.804	5.7E-13	5.5E-03
$H_{3}O^{+}$	1655.814	1.0E-10	1.4E-02
H_3O^+	984.697	1.0E-10	4.8E-02
H ₂ O	1113.343	2.2E-07	1.6E+00 (2.0E-1)
H ₂ O	987.927	2.2E-07	1.8E+00 (2.8E-2)
H ₂ O	752.033	2.2E-07	1.6E-01
H ₂ O	556.936	2.2E-07	5.4E+00 (1.0E+0)
H ₂ O	1669.905	2.2E-07	3.8E-01
HDO	893.639	1.3E-12	1.1E-02
$H_{2}^{18}O$	1101.698	2.0E-10	1.5E+00
CÕ(10-9)	1151.985	2.6E-04	1.4E+01 (2.1E+0)
CO(15-14)	1726.603	2.6E-04	9.2E+00 (4.8E-4)
13CO(10-9)	1101.350	3.8E-06	4.0E+00
13CO(15-14)	1650.768	3.8E-06	3.0E-01
OH	2509.988	4.0E-10	1.4E-02
OH	2514.316	4.0E-10	1.4E-02
0	4745.804	1.4E-04	3.8E+00 (1.5E+2)
0	2060.068	1.4E-04	2.4E+00 (5.6E+1)

Line estimates for S106 from two different PDR codes (Meudon & KOSMA) obtained with similar input parameters.

V.Ossenkopf

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state key rates in the chemical network (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state key rates in the chemical network (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

the water ladder

Water

The will have the chance to actually understand the chemistry and excitation of water.

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state key rates in the chemical network (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

the water ladder

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state key rates in the chemical network (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

the water ladder

chemistry and cooling by water

SOFIA, HIFI, ...

New observations

lines and continuum quasi-simultaneously

full frequency surveys

PDR related questions

interplay with continuum (FIR pumping, PAH excitation, ice destruction ...) all major PDR cooling lines

huge chemical network

hydrides in their ground state key rates in the chemical network (CH, NH, NH⁺, NH₃, OH⁺, H₃O⁺, H₂O)

the water ladder

chemistry and cooling by water

Think big! We have to put everything together in the models as we will get everything together in the observations.

V.Ossenkopf

SOFIA, HIFI, ALMA...

New observations PDR related questions

velocity profile of cooling lines evaporation of PDRs transport pattern of species (Decamp & Le Bourlot) expansion of HII shells turbulent flows (Gerin et al.)

SOFIA, HIFI, ALMA...

New observations PDR related questions

velocity profile of cooling lines evaporation of PDRs transport pattern of species (Decamp & Le Bourlot) expansion of HII shells turbulent flows (Gerin et al.)

self absorption pattern in the lines

PDR profiles

Tombining the observation of many lines and the profiles only allows to extract the excitation structure along the line of sight.

SOFIA, HIFI, ALMA...

New observations PDR related questions

velocity profile of cooling lines evaporation of PDRs transport pattern of species (Decamp & Le Bourlot) expansion of HII shells turbulent flows (Gerin et al.)

self absorption pattern in the lines

SOFIA, HIFI, ALMA...

New observations	PDR related questions
velocity profile of cooling lines	evaporation of PDRs transport pattern of species (Decamp & Le Bourlot) expansion of HII shells turbulent flows (Gerin et al.)
self absorption pattern in the lines	determination of the actual cooling line strength structure along the line of sight

SOFIA, HIFI, ALMA...

New observations	PDR related questions
velocity profile of cooling lines	evaporation of PDRs transport pattern of species (Decamp & Le Bourlot) expansion of HII shells turbulent flows (Gerin et al.)
self absorption pattern in the lines	determination of the actual cooling line strength structure along the line of sight

Time dependent models will be essential.

ALMA

New observations

PDR related questions

complex, clumpy, turbulent structure at mas scale

neither plane-parallel nor spherical PDRs merging turbulence models with PDR models

ALMA

New observations

PDR related questions

complex, clumpy, turbulent structure at mas scale

resolution dependent pattern of species

neither plane-parallel nor spherical PDRs merging turbulence models with PDR models

Chemistry and resolution

The chemical structure is time dependent and changes at different spatial scales on different time scales (Helmich 1998).

ALMA

New observations

PDR related questions

complex, clumpy, turbulent structure at mas scale

resolution dependent pattern of species

neither plane-parallel nor spherical PDRs merging turbulence models with PDR models

ALMA

New observations

PDR related questions

complex, clumpy, turbulent structure at mas scale

resolution dependent pattern of species

neither plane-parallel nor spherical PDRs merging turbulence models with PDR models

nested-scales chemistry

ALMA

New observations

PDR related questions

complex, clumpy, turbulent structure at mas scale

resolution dependent pattern of species

neither plane-parallel nor spherical PDRs merging turbulence models with PDR models

nested-scales chemistry

The will need 3-D PDR codes.

The modelling progress has to be accelerated to catch up with the upcoming observational prospects.

We need the bundled effort – as started here – to achieve this acceleration.